Beyond χ2 Difference: Learning Optimal Metric for Boundary Detection

نویسندگان

  • Fei He
  • Shengjin Wang
چکیده

This letter focuses on solving the challenging problem of detecting natural image boundaries. A boundary usually refers to the border between two regions with different semantic meanings. Therefore, a measurement of dissimilarity between image regions plays a pivotal role in boundary detection of natural images. To improve the performance of boundary detection, a Learning-based Boundary Metric (LBM) is proposed to replace χ difference adopted by the classical algorithm mPb. Compared with χ difference, LBM is composed of a single layer neural network and an RBF kernel, and is fine-tuned by supervised learning rather than human-crafted. It is more effective in describing the dissimilarity between natural image regions while tolerating large variance of image data. After substituting χ difference with LBM, the F-measure metric of mPb on the BSDS500 benchmark is increased from 0.69 to 0.71. Moreover, when image features are computed on a single scale, the proposed LBM algorithm still achieves competitive results compared with mPb, which makes use of multi-scale image features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

A Framework for Testing Properties of Discrete Distributions: Monotonicity, Independence, and More

Given data sampled from an unknown discrete probability distribution p, does the underlying distribution possess some property of interest? For instance, is the distribution uniform? Monotone? Are its marginals independent? This class of problems is one of the most fundamental questions in statistics, where it is known as hypothesis testing. Classical work on this problem has focused on distrib...

متن کامل

Ground metric learning

Optimal transport distances have been used for more than a decade in machine learning to compare histograms of features. They have one parameter: the ground metric, which can be any metric between the features themselves. As is the case for all parameterized distances, optimal transport distances can only prove useful in practice when this parameter is carefully chosen. To date, the only option...

متن کامل

Solutions of initial and boundary value problems via F-contraction mappings in metric-like space

We present sufficient conditions for the existence of solutions of second-order two-point boundary value and fractional order functional differential equation problems in a space where self distance is not necessarily zero. For this, first we introduce a Ciric type generalized F-contraction and F- Suzuki contraction in a metric-like space and give relevance to fixed point results. To illustrate...

متن کامل

Multiple Instance Learning with the Optimal Sub-Pattern Assignment Metric

Multiple instance data are sets or multi-sets of unordered elements. Using metrics or distances for sets, we propose an approach to several multiple instance learning tasks, such as clustering (unsupervised learning), classification (supervised learning), and novelty detection (semi-supervised learning). In particular, we introduce the Optimal Sub-Pattern Assignment metric to multiple instance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Signal Process. Lett.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015